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The purpose of
this paper is to

present the
Murnaghan-
Hildebrand

equation of state
for solids and
liquids and to
show at least

some of the ways
it can be used to
illustrate basic
thermodynamic
relationships.

he Murnaghan-Hildebrand equation of state, an
accurate equation of state for many solids and
liquids, is introduced for use in the illustration of
thermodynamic relationships. It is shown to meet the

need for an equation of state accurate over a wide range of
pressures. Parameters are given for four solid phases of iron
and for the liquid, with which eleven thermodynamic functions
including V, U, H, S, αV, V/B, and G can be calculated at any
specified temperature and pressure. The program for these
calculations can be used to represent experimental values, to
illustrate thermodynamic relationships, to calculate chemical
and phase equilibria, and to stimulate student interest from the
study of real systems, for instance, the form of iron in the core
of the earth.

Introduction
The standard thermodynamic variables are complex functions
of temperature, pressure, and composition. Fortunately, their
derivatives are interrelated by expressions like the Maxwell

T
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equations. For example:

dS

dP

dV

dTT P





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= −



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(1)

It is not intuitively obvious how useful partial derivatives can be; thus, it is important
to give students a lot of experience using these equations. One way to accomplish this
is by using an equation of state, which gives the volume of a pure material as a
function of temperature and pressure:

( )V f T P= , (2)

A good equation of state for student use should be both simple and accurate. The ideal
gas equation of state is simple enough, but it yields trivial expressions like:

dU

dP

PV

B
VT

T





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= − =α 0 (3)

One can use the van der Waals equation of state to illustrate thermodynamic
relationships as in a recent textbook [1]; however, I have found that none of the
common equations of state for gases is accurate enough over a reasonably wide range
of pressures to warrant a large investment in student time.

The situation is quite different for condensed phases. Nearly everyone in this
subdiscipline uses the Murnaghan logarithmic equation of state to represent
experimental data, and a simple extension of this equation, a Murnagan-Hildebrand
equation of state, works extremely well for many common materials including
MgO [2] and iron [3]. The purpose of this paper is to present the Murnaghan-
Hildebrand equation of state for solids and liquids and to show at least some of the
ways it can be used to illustrate basic thermodynamic relationships.

The Murnaghan Logarithmic Equation of State
The compressibility of any material, defined as

β = − 





1

V

dU

dP T

(4)
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decreases with increasing pressure toward a limit of 0. It turns out to be very
convenient to use the reciprocal of compressibility, which is called the bulk modulus
and represented by the capital letter B.

B V
dP

dV T

= − 





(5)

For many materials B increases linearly with pressure:

B B NP V
dP

dV T

= + = − 



0 (6)

where the subscript in B0 designates the value at zero pressure and N is a constant
independent of pressure. N has no units because the bulk modulus has the same units
as pressure. The last part of equation 6 can be integrated to give

V V NP B N= + −
0 0

11( / ) / (7)

where V0 is the volume at zero pressure.

There are three ways to show students that equations 5, 6, and 7 are consistent.
Integration will demonstrate that you are a mathematical expert. Differentiating
equation 7 is a procedure the best college students can follow. The third way,
calculations for selected pressures, is the most convincing for the most students. For
example, for iron at 298.15 K we have V0 = 7.09085 cm3 mol-1, B0 = 168,681.17 MPa,
and N = 5. We can calculate the volume of alpha iron at 298.15 K and three pressures:
9,990; 10,000; and 10,010 MPa. This gives V9,990 = 6.732389028, V10,000 =
6.732081137, and V10,010 = 6.73177333. We can then write:

∆
∆
V

P
= − = − × −0 00061570

20
30785 105.
. (8)

= − = −
+

= × −V

B

6 732081137
16868117 50000

307849 105.
.

. (9)

Note that for checking equations involving derivatives and computer programming one
must suspend the ordinary rules about significant figures. We get five significant
figures in ∆V/∆P only by using 9 or 10 decimal places in the values of V.
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The calculations in equations 8 and 9 demonstrate a number of relationships, but
particularly that volumes from equation 7 are consistent with the bulk modulus of
equation 6.

Hildebrand Equations of State
For a Hildebrand equation of state [4, 5], the pressure is equal to the pressure at that
volume at 0 K plus a thermal pressure, Pth, independent of volume:

( ) ( )P P V P Tth= +0 K,0 (10)

This can be valid for many expressions for volume as a function of pressure, but if
equation 8 is used along with equation 10, one has a Murnaghan-Hildebrand equation
of state.

The Murnaghan-Hildebrand Equation of State
We can show two important consequences of a Murnaghan-Hildebrand equation of
state by taking the derivative of equation 10 with respect to volume at constant
temperature:

dP
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(11)

− = − + = − = −
+B

V
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V
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V
0 0 0 0 0T K , K (12)

Equation 12 requires that N is independent of temperature as well as independent of
pressure because N must equal N0, the value at 0 K. Similarly, the bulk modulus must
be the same function of volume at all temperatures, and in fact

B B
V

VT
T

N

= 





0 0

0 0
, K

, K (13)
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or more usefully

B B
V

VT
T

N

=






0

0*
*

(14)

because V0 and B0 are more commonly known at a standard temperature like 298.15 K
(designated by the asterisk subscript) than at 0 K. Thus equation 7 is a Murnaghan-
Hildebrand equation of state if equation 14 holds as well.

Equation 14 is extremely useful because it supplies values for the bulk modulus for
temperatures at which it has not been measured. It was initially derived [2] by a double
integration on the assumption that N was constant, independent of temperature and
pressure. However, we have omitted a constant of integration, and equation 14 holds
only for materials following the Murnaghan-Hildebrand equation of state. It does not
work for liquid water even if N is independent of temperature. The easy way to get
equation 14 is by solving equation 7 for B = B0 + NP. That shows B as a function of V
at constant temperature, and B will be the same function of V at all temperatures if the
substance follows a Hildebrand equation of state, with a thermal pressure which is a
function of temperature only.

Applications to Real Materials
Equations 6, 7, and 14 can be used to calculate the thermodynamic properties of a
material at any temperature and pressure provided they are known at some standard
temperature and pressure, normally 298.15 K and 0.1000 MPa. Cp and V must be
known as functions of temperature at low pressure, but this information is generally
available for any common material. At least one value of the bulk modulus must be
known. The value of N can often be estimated with reasonable accuracy, or it can be
calculated from two values of the bulk modulus using equation 6 or 14. The only
assumption required is that the material follows a Murnaghan-Hildebrand equation of
state. This assumption appears to be reasonable for most solids and liquids, excluding
those like liquid water and alpha quartz which have peculiar coefficients of thermal
expansion.

A recent paper [2] showed that MgO(c) data was well fitted by a Murnaghan-
Hildebrand equation of state. The single value, N = 4.57, fits both the pressure and
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temperature dependence of the bulk modulus. Solid sodium chloride is a more
compressible solid, which has been proposed as a pressure calibration standard [6].
The tabulated volume data for sodium chloride from a complex Birch-Murnaghan
equation of state [6] are well represented by B0

*  = 24.1 GPa and N = 4.4 from 273 to
1073 K and pressures up to 10.6 GPa. Even wider ranges of temperature and pressure
are covered accurately by Murnaghan-Hildebrand equations of state for liquid iron and
various iron crystal structures. Data are available for hexagonal closed packing for iron
from 13 to 301 GPa at room temperature [7]. Any constant value for N between 4 and
5 will do a good job of fitting the volume data over this wide pressure range.
Murnaghan-Hildebrand equations of state are also adequate for fitting the experimental
data for solid gold, another material which has been proposed [8] for pressure
calibration at high temperatures. One can reasonably expect it to hold for the chemicals
involved in life processes at least to the pressures found in the ocean depths.

Evaluating N from volume data using equation 6 or 14 really involves a second
derivative, so small changes in N may not be noticeable; however, more accurate bulk
modulus values can be obtained from ultrasonic velocities or direct measurement of
elastic constants. Such measurements on San Carlos olivine [9] are accurately fitted by
the linear expression

B P= +1263 428. .  (15)

Of course one can find other solids, like Kilbourne hole orthopyroxene [10] where a
quadratic is indicated. In fact, many materials including liquid water and liquid
mercury have a value for (dB/dP)T well above 5.0. For gases at high pressure, high
values of N are required for the bulk modulus to increase from the value zero at the
critical point to values similar to solid and liquid values. In all these cases the values of
N vary with pressure, decreasing as pressure increases. A so called universal equation
of state has been proposed [11, 12] with this feature. However for teaching purposes it
is important to choose a simple model, and counterproductive to dwell on its
limitations. The Murnaghan-Hildebrand equation of state works, often within the
accuracy of the experimental data.

Using the Murnaghan-Hildebrand Equation
Equation 1 provides an accurate expression for the pressure dependence of entropy. It
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can be checked by calculating entropy and volume at four points around a particular
temperature and pressure. Thus, the entropy of epsilon (ε) iron at 800 K and 13,995
MPa is 53.632030 J mol-1 K-1, decreasing to 53.628964 J mol-1 K-1 when the pressure
is increased to 14,005 MPa. Thus, �S/�P = –0.003066/10. This is approximately equal
to (dS/dP)T which agrees with the value for �V at 800 K and 14,000 MPa,
0.000306562 cm3 mol-1 K-1. We can also show that (dV/dT)P = �V by calculating the
volume at 14,000 MPa and the two temperatures, 795 and 805 K: (6.462471–
6.459406)/10 = 0.003065.

When the equation of state is known for any material, we can calculate the quantity �V
at any temperature and pressure we choose. Because V is a state function, the two ways
of taking a mixed second derivative must be equal. Thus we have:

( )d V

dPdT

d V

dP

d
V

B
dT

T

P

2

=






 =

−





















α
(16)

and explicitly taking the last derivative

d
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
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


+ 










α
2 (17)

and equation 14 can be used to evaluate (dB/dT)P. It is not essential that students trust
or even follow the derivation of these formulas. They should be able to take calculated
values at the four temperature and pressure pairs above and show that

( )∆
∆

∆

∆
αV

P

V

B
T

=







(18)

The Murnaghan-Hildebrand equation of state is simple enough that integrations of
(d(�V)/dP)T and even (dCp/dP)T can be performed analytically, but this skill is almost
unnecessary in the modern computer age. The required integrals over temperature and
pressure can be put into suitable computer programs, and a full set of
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TABLE 1.  Thermodynamic Values For ε Iron at Temperatures and Pressures Near 800 K and 14000 MPa.

Quality Units

T 800.0000 800.0000 800.0000 795.0000 800.0000 80500000 800.1000 K

P 13995.00 14000.00 14005.00 14000.00 14000.00 14000.00 14007.626 MPa

V 6.461086 6.460939 6.460792 6.459406 6.460939 6.462471 6.460746 cm3 mol-1

U 18870.49 18871.32 18872.15 18738.07 18871.32 19004.81 18875.25 J mol-1

H 109293.4 109324.5 109355.5 109169.7 109324.5 109479.4 109375.0 J mol-1

S 53.63203 53.63050 53.62896 53.43649 53.63050 53.82357 53.63203 J mol-1 K-1

A -24035.1 -24033.1 -24031.0 -23743.9 -24033.1 -24323.2 -24035.7 J mol-1

G 66387.76 66420.07 66452.37 66687.74 66420.07 66151.43 66463.98 J mol-1

Y -76.0977 -76.1381 -76.1785 -76.9536 -76.1381 -75.3315 -76.1834 J mol-1 K-1

PV 90422.90 90453.15 90483.39 90431.68 90453.15 90474.60 90499.71 J mol-1

αV 0.000307 0.000307 0.000307 0.000307 0.000307 0.000306 0.000306 cm3 mol-1 K-1

V/B 0.000029 0.000029 0.000029 0.000029 0.000029 0.000029 0.000029 cm3/(mol MPa)

CP 30.96572 30.96588 30.96604 30.92191 30.96588 31.00985 30.96701 J mol-1 K-1

V/B 0.029363 0.029359 0.029355 0.029318 0.029359 0.029401 0.029354 cm3/(mol GPa)

H0 5509.600 5509.600 5509.600 5509.600 5509.600 5509.600 5509.600 J mol-1

Cv 28.40455 28.40507 28.40558 28.37009 28.40507 28.44011 28.40655 J mol-1 K-1

H-H0 103783.8 103814.9 103845.9 103660.1 103814.9 103969.8 103865.4 J mol-1

Npa 0.000801 0.000800 0.000800 0.000798 0.000800 0.000803 0.000800 cm3 mol-1 GPa-2

α 47.45388 47.44849 47.44310 47.49127 47.44849 47.40574 47.43942 MK-1

B 220038.1 220063.1 220088.1 220324.4 220063.1 219802.3 220096.0 MPa

Bs 239878.3 239902.5 239926.7 240142.0 239902.5 239662.8 239934.6 MPa

N 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000

a) The quantity Np is (1+N)*V/B2 in units of cm3 mol-1 GPa-2
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11 thermodynamic functions can be calculated at specified temperatures and pressures
for any material for which one has a suitable data file of input parameters. Table 1
shows such calculated values for seven combinations of T and P near 800 K and
14,000 MPa for epsilon iron.

With the values in Table 1 it is easy to show that both sides of equation 18 are equal to
–8.4 × 10-9 cm3 mol-1 MPa-1 K-1. It is often useful to check derivations and
programming by calculations of �Q/�X for a real substance, where Q and X can be any
thermodynamic variable. Table 2 shows 20 partial derivatives of the form (dQ/dP)T or
(dQ/dT)P which can be checked in this way.

One can also use Table 2 to derive general partial derivatives where something other
than temperature or pressure is held constant. For example, to evaluate (dV/dP)S, which
equals –V/BS, one writes three equations, setting the third to zero:

( )dV
V

B
dP V dT= −





+ α (19)

dP dP= +1 0 (20)

( )dS V dP
C

T
dTp= − + 






 =α 0 (21)

Solving equation 21 for dT and substituting this into the other equations to get dV and
dP gives

( )dV

dP

V

B

V T

C

V

BS P S





 = − + = −

α 2

(22)

which is the correct relationship between the bulk modulus at constant temperature and
the isoentropic bulk modulus, BS.

Care has been taken in Table 2 and equation 22 to keep the quantities (�V) and (V/B)
together, because they must stay together in calculating changes in chemical reactions
and in equations for partial molal quantities. Thus,
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TABLE 2.  Partial derivatives of 11 extensive thermodynamic quantities with respect to

temperature and pressure.

Quantity Partial Derivatives

Q (dQ/dP)T (dQ/dT)p

T 0 1

P 1 0

V -V/B αV

U PV/B - TαV CP - PαV

H V - TαV CP

S -αV CP/T

A PV/B S - PαV

G V -S

Y  a -V/T (H-H (298 K))/T2

PV V-PV/B PαV

αV -d(V/B)/dT-(V/B)(αV)(1+N)/V  b d(αV)/dT

V/K -d2V/dP2-(V/B)2(1+N)/V  b d(V/B)/dT(V/B)(αV)(1+N)/V  b

CP -(1/T(d(αV)/dT) dCp/dT

a)  The Planck function, Y, is defined as -(G-H (298 K))/T

b)  Values taken for complex derivatives if the substance follows aMurnaghan-Hildebrand equation of
state.

( )d V

dT
V

P

∆ ∆





= α (23)

and the derivative is not equal to ��*�V. Similarly, while the dimensionless quantity,
N, plays the major role in the Murnaghan-Hildebrand equation of state, it is the
complex combinations shown in Table 2, (V/B)2(1 + N)/V and (V/B)(�V)(1 + N)/V,
which are second derivatives of V and thus are well behaved thermodynamically. The
output of the thermodynamic program, PHF, includes a number of values like �, B, Bs,
and N, which are not linear functions of the extensive thermodynamic parameters.
They are included at the bottom of Table 1, but it is important to recognize that
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changes in these quantities cannot automatically be substituted into the standard
thermodynamic equations.

The procedure used in equations 19 through 22 is applicable to get expressions for any
thermodynamic relationship involving the 13 parameters in the table. A good test of
student understanding of the process is to use the expressions for dU, dT, and dV to
derive the relationship

( )dU

dT
C T V

B

Vv
p







= − α 2
(24)

One involving even more cancellation of terms is to show that (dU/dV)S = P.

Calculations with the Program PHF
It is possible to check relationships like equation 22 with a computer program as well.
The program PHF is designed for calculations at a particular temperature, with
pressure as the next input value. If you want calculated values at a particular volume or
entropy, a trial and error procedure is required. Thus, the first step in calculating a
column like number 8 in Table 1 is to pick a temperature. For this example, we pick
800.1 K. The next step is to pick pressures until you bracket the value wanted. For
column 8 we want an entropy of 53.632030 J mol-1 K-1, which requires a pressure
between 14010 and 14000 MPa. Then, four pressures are tested to narrow the range to
between 14,007 and 14,008. One can use an interpolation procedure to pick the next
pressure value to try, but the computer calculation is so fast that it is just as efficient to
try three or four values as one moves to the next decimal place. In any case, the final
pressure needed to match the sixth decimal place in S is 14,007.626 MPa. Using
columns 2 and 8 of Table 1, it can be shown that

B V
P

VS = 





= 





=∆
∆

6 461
12 626

0 000340
239 931.

.
.

,  MPa (25)

which agrees with Table 1 values to four significant figures.

Values for Iron
All of the values in Table 1 are for epsilon iron, the hexagonal closest-packed crystal,
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which is thermodynamically stable at this temperature and pressure. It is generally
stable at low temperatures and pressures above 13,000 MPa. The cubic-closest-packed
structure, gamma (γ) iron, also has a substantial region of thermodynamic stability, and
it is possible to calculate its thermodynamic properties at 800 K and 14,000 MPa. Its
free energy, defined by the two equations:

G H TS= −  (26)

( ) ( )( )H H  H Hf= + −∆ 298 K,  0.1 MPa 298 K (27)

is 66,638.61 J mol-1 K-1, only slightly more than that of the epsilon crystals at this
temperature and pressure, 66,420.07 J mol-1 K-1. It is very convenient to have the
option of output from the program PHF as columns of values in a standard order as in
Tables 1 and 3, ready for input into a spreadsheet program, so that with the effort to
calculate �G = 218.54 J mol-1 we can also get values for �V, �U, �H, �S, etc. as
shown in column 6 of Table 3. The value of �S = 4.0036 J mol-1 K-1 indicates that the
two phases will be in equilibrium at a temperature about 55 K higher. Columns 3, 5,
and 7 of Table 3 show that the two phases have equal free energy at 854.56 K and
14,000 MPa. Similarly the equilibrium temperature can be found for other pressures.

If we have measured values or estimates for the thermodynamic values for the body
centered cubic phase and for liquid iron, and we assume that Murnaghan-Hildebrand
equations of state are suitable at least over a range of pressures, it is possible to
calculate a full phase diagram for iron as in Figure 1. This merely involves repeating
calculations like that described in the previous paragraph for many pressures and
several pairs of forms of iron.

Input Data for the PHF Program
As input for thermodynamic calculations one needs a set of thermodynamic variables
at 298.15 K and 0.1000 MPa, the selected standard temperature and pressure. The
standard values we choose in designing input files are S, H, Cp, V, V/B, (V/B)2

(1 + N)/V, and �V. One also needs equations for the temperature dependence of Cp and
of V at the standard pressure, or any other low pressure. These are represented by the
two equations:
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TABLE 3.  Thermodynamic Values For ε Iron at Temperatures and Pressures Near 800 K and 14000 MPa.

Quality Fe D-B E-C

T 800 854.56 800 854.56 800 854.56

P 14000 14000 14000 14000 14000 14000

V 6.46094 6.4776 6.5471 6.56457 0.08616 0.08697

U 18871.3 20340.6 21086.5 22547.5 2215.18 2206.9

H 109324 111027 112745 114451 3421.43 3424.44

S 53.6305 55.6891 57.6341 59.6964 4.00362 4.00725

A -24033. 1 -27249.1 -25020.8 -28466.6 -987.707 -1217.54

G 66420.1 63437.4 66638.6 63437.4 218.538 0.00133

Y -76.1381 -67.7866 -73.5859 -65.1416 2.55222 2.645

PV 90453.1 90686.5 91659.4 91904 1206.25 1217.54

αV 0.00031 0.0003 0.00032 0.00032 1.5 × 10-5 1.5 × 10-5

V/B 2.9 × 10-5 3 × 10-5 3.1 × 10-5 3.2 × 10-5 2 × 10-6 2 × 10-6

CP 30.9659 31.4457 31.0192 31.5028 0.05331 0.05705

V × 103/B 0.02936 0.02982 0.03104 0.03154 0.00168 0.00173

H (298 K) 5509.6 5509.6 7769.91 7769.91 2260.31 2260.31

Cv 28.4051 28.7911 28.3552 28.7468 -0.04987 -0.04433

H-H (298 K) 103815 105517 104976 106682 1161.12 1164.13

Np × 106 0.0008 0.00082 0.00088 0.00091 8.3 × 10-5 8.6 × 10-5

a × 106 47.4485 46.9832 49.1086 48.5865 1.66016 1.60331

B 220063 217247 210901 208109 -9162.16 -9137.55

Bs 239902 237277 230715 228061 -9187.26 -9216.57

N 5 5 4.99999 4.99999 -7 × 10-6 -7 × 10-6
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FIGURE 1. CALCUATED PHASE DIAGRAM FOR IRON.

TABLE 4.  The form used for input files for the program PHF.

Chemical formula and form
Reference
More Reference data
Temperature range, pressure range
Person compiling the data
Original data and the date of the last revision

S L  a H

Cp A B C D

E F

V V/B (V/B)2(1-N)/V TαV M  b

αV H I J K

a)  A value other than 0.0 is required for L only if the heat capacity equation is not valid at
298.15.

b)  A value of M = 0.0 is used for all materials which follow a Murnaghan-Hildebrand
equation of state.It is included in the program to allow calculations for other materials, like
H2O (l).
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( ) ( ) ( ) ( )C C A T B T C Tp p= + − + − + −298.15 K,  0.1 MPa 29815 29815 29815
2 3

. . .

( ) ( ) ( )+ − + − + −− − − −D T E T F T29815 29815 29815
4 0 5 0 5 2 2. . .. . (28)

( ) ( ) ( ) ( )V V V T H T I T= + − + − + −298.15 K,  0.1 MPa α 29815 29815 29815
2 3

. . .

( ) ( )+ − + −J T K T29815 29815
4 5

. . (29)

Even with seven terms in the power series for Cp, the equation is adequate over only a
limited range of temperatures. When the valid temperature range does not include
298.15 K, one needs a correction value for enthalpy which is represented in Table 4 by
the letter L. Eleven lines of input are used for each chemical substance. The first line
describes the material and form and the next five lines show references, range of
validity, etc., important data but not used in the computer calculations. The input
values are arranged on the next five lines as shown in Table 4. Values for three low-
temperature crystal forms of iron are shown in this format in Table 5, and values for
higher temperatures and for liquid iron are in Table 6.

It is usually possible to find all of the values at 298.15 K and 0.1000 MPa needed as
input for a material. Estimates  are often  adequate for missing values. For  example the
heat capacity for � iron is estimated from that for � iron, and values of N in the range
from 4 to 5 fit many substances. It is a bit awkward to require one to calculate
(V/B)2 (1 + N)/V for input in place of N, but this inconvenience is more than repaid in
having a value that works consistently in calculations of changes in chemical reactions
or partial molal quantities.

The relationships in Table 2 and output like that in Tables 1 and 3 can be used for a
wide variety of student problems for homework or exams. The file SUPP23.TXI gives
some simple examples in the form of a cooperative education assignment formulated
for a seminar in which this material was presented.
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TABLE 5.  Values for Three Low-Temperature Crystal Forms of Iron.

Fe (c, epsilon, hcp)
for gamma-liquid-epsilon equilibria
H.-K. Mao, W. A. Bassett, and T. Takahashi,  J. appl. Phys., 38, 272 (1967)
1500-4000K, 0-1000 MPa
Reed A. Howald
8/12/96, 8/12/96
31.146   0.00     5509.6
26.453512  0.008403  -1.7411e-8  0.  0.
0.    0.
6.73153  37.5541e-6 0.001257049  0.
4.8534e-4  0.  0.  0.  0.
Fe (l)
from EQFEH.DAT of5/19/88
V and alpha*V to fit melting data at high P
1500-4000K, 0-1000 MPa
Reed A. Howald
8/12/96, 9/18/96
31.7326783  -2527.98   10144.85
41.418524  .0016736       0.0   0.0   0.0
0.    0.
6.8511   40.6416e-6  0.00144655   0.
7.31875e-4    0.    0.    0.    0.
Fe(c,gamma,fcc)
from FENIC of autumn 1976, K to fit equil. with liquid
Z. E. Basensky, W. Hume-Rothery, and Sutton, Proc. Roy. Soc., 229, 459 (1955)
290-4000K, 0-3000 MPa
Reed A. Howald
8/12/96, 9/29/96
35.4754   0.00     7769.913
26.45589  0.0084014  -1.7411e-8  0.  0.
0.    0.
6.83531  40.2e-6 0.00141855  0.
5.2168e-4  0.  0.  0.  0.
Fe (c, delta, bcc, T>1274)
from EQFEH.DAT of5/19/88
adjusted to equil. with gamma at 1665 K, delta H = 815 J
1274-2050K, 0-2000000 MPa
Reed A. Howald
8/12/96, 9/30/96
43.0942846  -14861.196   0.00
80.247604  -0.0881192 0.604944e-4 -0.130918e-7  0.
0.      0.
6.88916  35.3568e-6  0.00108876  0.00
5.12810e-4  0.0  0.0  0.0  0.
Fe (c,alpha, bcc, low T)
least squares to JANAF 1988 values
alpha from Touloukian
200-900 K, 0-2000 MPa
Reed A. Howald
8/12/96, 9/30/96
27.280  0.00   0.00
24.981604514  0.02923819825  -.41368922566e-4  6.55304271976e-8  8.891928082666e-12
0.      0.
7.09085  42.037e-6  0.00149526  0.
2.93975e-4  2.25559e-8  0.  0.  0.
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TABLE 6.  Values for Higher-Temperature Crystal Forms of Iron and for Liquid Iron.

Fe (c, epsilon, hcp)
for gamma-liquid-epsilon equilibria
H.-K. Mao, W. A. Bassett, and T. Takahashi,  J. appl. Phys., 38, 272 (1967)
2050-6000K, 0-1000 GPa
Reed A. Howald
8/12/96, 10/5/96
48.112286  -8840.735     5509.6
36.56519  0.0026  0.00  0.  0.
0.    0.
6.73153  37.5541e-6 0.00125705  0.
4.8534e-4  0.  0.  0.  0.
Fe (l)
from EQFEH.DAT of5/19/88
V and alpha*V to fit melting data at high P
1500-6000K, 0-1,000,000 MPa
Reed A. Howald
8/12/96, 9/18/96
31.7326783  -2527.980   10144.85
41.418524  .0016736       0.0   0.0   0.0
0.    0.
6.8511  40.6416e-6  0.00144655   0.
7.31875e-4    0.    0.    0.    0.
Fe(c,gamma,fcc)
from FENIC of autumn 1976 via EQFEH.DAT of 5/19/88  Z. S. Basinsky,
W. Hume-Rothery, and A. L. Sutton, Proc. Roy. Soc. A, 229, 459 (1955)
2050-6000K, 0-100000 MPa
Reed A. Howald
8/12/96, 10/5/96
52.438562   -8838.995     7769.913
36.56519 0.0026  0.00  0.  0.
0.    0.
6.83531  40.2e-6 0.00141855  0.
5.2168e-4  0.  0.  0.  0.
Fe (c, delta A, bcc, T>2050)
volume Basensky 1955, K Mao 1967
adjusted to equil. with gamma at 1665 K, delta H = 815 J
2050-6000K, 0-1,000,000 MPa
Reed A. Howald
8/12/96, 1/9/97
23.3022606  43.333  0.00
36.56519  0.0026  0.00  0.00  0.
0.      0.
6.88916  0.0000420152  0.00153744  0.
5.1281e-4  0.0  0.0  0.0  0.
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